Abstract

We investigate spatially inhomogeneous solutions in a top-down holographic model: the D3/D7 model which provides a holographic description of the chiral phase transition for a finite external magnetic field, chemical potential, and temperature. We numerically find a domain wall (or kink) solution in the three dimensional space, which incorporates between the chiral symmetry broken phase at the spatial infinity, under the homogeneous sources. Along with the inhomogeneity of the chiral condensate, the charge density is also spatially modulated. The modulated charge density and finite magnetic field lead to the chiral edge current close to the domain wall. We explore the dependences of those profiles on the chemical potential and temperature near the first and second order phase transition points. Our results indicate that the inhomogeneous solutions we found are in good agreement with those obtained by the Ginzburg-Landau theory in the vicinity of the transition points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.