Abstract

To study the mechanism and role of ligand-dependent endocytosis, we have engineered a mutant insulin receptor that retains its insulin binding and insulin-stimulated tyrosine kinase activities but does not exhibit ligand-induced internalization. The mutant has a deletion of the 16th exon which encodes 22 amino acids (residues 944-965) on the cytoplasmic side of the transmembrane region of the receptor beta-subunit. When the cDNA is transfected in Rat 1 cells, the mutant receptor (HIR delta ex16) is processed to a glycosylated alpha 2 beta 2 heterotetramer and expressed at the cell surface. HIR delta ex16 receptors bind insulin with lower affinity than normal receptors (ED50 for insulin competition = 1.1 nM compared with 0.2 nM for normal receptors), but binding is normal in detergent solution. The mutant HIR delta ex16 receptor undergoes insulin-dependent autophosphorylation and activation as a tyrosine kinase toward exogenous substrates in vitro. In vivo, the receptor is also enzymatically active, as assessed 1) by the ability of antiphosphotyrosine antibodies to precipitate equivalent proportions (58-60%) of occupied wild type or mutant receptors and 2) by immunoblotting extracts of insulin-stimulated cells using antiphosphotyrosine antibodies. In the latter experiment, cells expressing HIR delta ex16 receptors exhibit tyrosine phosphorylation of insulin receptor beta-subunits as well as of pp 185, a putative substrate of the receptor. Despite the ability to bind insulin and activate as a tyrosine kinase, HIR delta ex16 receptors do not internalize in Rat 1 cells. Whereas normal surface receptors covalently labeled with the photoaffinity reagent 125I-NAPA-DP insulin are 36% intracellular after 1 h at 37 degrees C, only background levels of internalization are seen when HIR delta ex16 receptors are labeled. The HIR delta ex16 receptors mediate no internalization or degradation of 125I-insulin compared with control untransfected Rat 1 cells, and they do not down-regulate after long exposure to saturating concentrations of insulin. We conclude that the 16th exon encodes a domain necessary for ligand-dependent endocytosis.

Highlights

  • To study the mechanism and role of ligand-dependent endocytosis, we have engineered a mutant insulin receptor that retains its insulin binding and insulinstimulated tyrosine kinase activities but does not exhibit ligand-induced internalization

  • In this paper we report the identification of a cytoplasmic domain of the insulin receptor that is required for internalization of the receptor in fibroblasts

  • Internalization-Having demonstrated that the HIRJ.exlG receptors are expressed at the cell surface, bind insulin, and exhibit ligand-dependent tyrosine kinase activity, we examined the endocytosis of normal and mutant receptors

Read more

Summary

A Domain of the Insulin Receptor Required for Endocytosis in Rat Fibroblasts”

From the *Department of Medicine, Uniuersity of California, San Diego, La Jolla, California. The receptor is enzymatically active, as assessed 1) by the ability of antiphosphotyrosine antibodies to precipitate equivalent proportions (58-60%) of occupied wild type or mutant receptors and 2) by immunoblotting extracts of insulin-stimulated cells using antiphosphotyrosine antibodies. In the latter experiment, cells expressing HIRAexl receptors exhibit tyrosine phosphorylation of insulin receptor p-subunits as well as of. Despite the ability to bind insulin and activate as a tyrosine kinase, HIRAexl receptors do not internalize in Rat. 1 cells.

Current address
PROCEDURES
RESULTS
DISCUSSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.