Abstract
Certain integral operators involving the Szegö, the Bergman and the Cauchy kernels are known to have the reproducing property. Both the Szegö and the Bergman kernels have series representations in terms of an orthonormal basis. In this paper we derive the Cauchy kernel by means of biorthogonality. The ideas involved are then applied to construct a non-Hermitian kernel admitting a reproducing property for a space associated with the Bergman kernel. The construction leads to a domain integral equation for the Bergman kernel.1 2
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.