Abstract

A framework is developed for a robust and highly accurate numerical solution of the coupled Stokes-Darcy system in three dimensions. The domain decomposition method is based on a Dirichlet-Neumann type splitting of the interface conditions and solving separate Stokes and Darcy problems iteratively. Second kind boundary integral equations are formulated for each problem. The integral equations use a smoothing of the kernels that achieves high accuracy on the boundary, and a straightforward quadrature to discretize the integrals. Numerical results demonstrate the convergence, accuracy, and dependence on parameter values of the iterative solution for a problem of viscous flow around a porous sphere with a known analytical solution, as well as more general surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.