Abstract

Abstract We describe the algorithms for NVT and NPT-ensemble simulations developed within the parallel molecular dynamics program GBMOLDD. This program uses the domain decomposition algorithm and is targeted at large-scale simulations of molecular systems (particularly polymers and liquid crystals) composed of both spherically-symmetric and nonspherical sites. The nonspherical sites can be described either by a Gay–Berne potential or by soft repulsive spherocylinders. The molecules can be of arbitrary topology and the intramolecular forces are described via standard force fields. We tested the stability of both leap-frog and velocity-Verlet integrators on two “real-life” systems—a nematic liquid crystal phase of 1944 one-site Gay–Berne molecules and on 512 flexible liquid-crystalline dimers. In both cases the algorithm demonstrates good stability over the typical simulation times required for new phase formation and/or molecular relaxation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.