Abstract

A domain decomposition algorithm is introduced to couple nonisothermal compositional gas liquid Darcy and free gas flow and transport. At each time step, our algorithm solves iteratively the nonlinear system coupling the nonisothermal compositional Darcy flow in the porous medium, the RANS gas flow in the free-flow domain, and the transport of the species and of energy in the free-flow domain. In order to speed up the convergence of the algorithm, the transmission conditions at the interface are replaced by Robin type boundary conditions. The Robin coefficients are obtained from a diagonal approximation of the Dirichlet to Neumann operator related to a simplified model in the neighboring subdomain. The efficiency of our domain decomposition algorithm is assessed on several test cases focusing on the modeling of the mass and energy exchanges at the interface between the geological formation and the ventilation galleries of geological radioactive waste disposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.