Abstract

AbstractA nonoverlapping domain decomposition (DD) method is proposed for the iterative solution of systems of equations arising from the discretization of Helmholtz problems by the discontinuous enrichment method. This discretization method is a discontinuous Galerkin finite element method with plane wave basis functions for approximating locally the solution and dual Lagrange multipliers for weakly enforcing its continuity over the element interfaces. The primal subdomain degrees of freedom are eliminated by local static condensations to obtain an algebraic system of equations formulated in terms of the interface Lagrange multipliers only. As in the FETI‐H and FETI‐DPH DD methods for continuous Galerkin discretizations, this system of Lagrange multipliers is iteratively solved by a Krylov method equipped with both a local preconditioner based on subdomain data, and a global one using a coarse space. Numerical experiments performed for two‐ and three‐dimensional acoustic scattering problems suggest that the proposed DD‐based iterative solver is scalable with respect to both the size of the global problem and the number of subdomains. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.