Abstract

In Korea, more than 80% of municipal wastewater treatment plants (WWTPs) with capacities of 500 m3·d−1 or more are capable of removing nitrogen from wastewater through biological nitrification and denitrification processes. Normally, these biological processes show excellent performance, but if a toxic chemical is present in the influent to a WWTP, the biological processes (especially, the nitrification process) may be affected and fail to function normally; nitrifying bacteria are known very vulnerable to toxic substances. Then, the toxic compound as well as the nitrogen in wastewater may be discharged into a receiving water body without any proper treatment. Moreover, it may take significant time for the process to return back its normal state. In this study, a DO- and pH-based strategy to identify potential nitrification inhibition was developed to detect early the inflow of toxic compounds to a biological nitrogen removal process. This strategy utilizes significant changes observed in the oxygen uptake rate and the pH profiles of the mixed liquor when the activity of nitrifying bacteria is inhibited. Using the strategy, the toxicity from test wastewater with 2.5 mg·L−1 Hg2+, 0.5 mg·L−1 allythiourea, or 0.25 mg·L−1 chloroform could be successfully detected.

Highlights

  • In order to protect national waters from unwanted algae blooming, stringent regulations on the water quality of the effluents from wastewater treatment plants (WWTPs) has been imposed in Korea; especially, the regulation on the nitrogen levels is getting stricter

  • There exists a potential risk that toxic substances, including heavy metals, organic compounds, and nanoparticles could be released from an industry to a WWTP via various routes, e.g., intentional or unintentional spills, and leaking pipes [3]

  • During a storm, a number of toxic chemicals on the surface of urban areas can flow into a WWTP via storm runoff, especially in a combined sewer service area; about 87% of Metropolitan Seoul is provided with combined sewer service [4]

Read more

Summary

Introduction

In order to protect national waters from unwanted algae blooming, stringent regulations on the water quality of the effluents from wastewater treatment plants (WWTPs) has been imposed in Korea; especially, the regulation on the nitrogen levels is getting stricter. The joint treatment of industrial wastewater and domestic wastewater is commonly practiced [2]. There exists a potential risk that toxic substances, including heavy metals, organic compounds, and nanoparticles could be released from an industry to a WWTP via various routes, e.g., intentional or unintentional spills, and leaking pipes [3]. During a storm, a number of toxic chemicals on the surface of urban areas can flow into a WWTP via storm runoff, especially in a combined sewer service area; about 87% of Metropolitan Seoul is provided with combined sewer service [4]. It has been reported that 45–60% of Swedish WWTPs were found to receive wastewater containing inhibitory substances [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.