Abstract
Direct numerical simulations are used to examine laminar bubbly flows in vertical channels. For equal size nearly spherical bubbles the results show that at steady state the number density of bubbles in the center of the channel is always such that the fluid mixture there is in hydrostatic equilibrium. For upflow, excess bubbles are pushed to the walls, forming a bubble rich wall-layer, one bubble diameter thick. For downflow, bubbles are drawn into the channel center, leading to a wall-layer devoid of bubbles, of a thickness determined by how much the void fraction in the center of the channel must be increased to reach hydrostatic equilibrium. The void fraction profile can be predicted analytically using a very simple model and the model also gives the velocity profile for the downflow case. For the upflow, however, the velocity increase across the wall-layer must be obtained from the simulations. The slip velocity of the bubbles in the channel core and the velocity fluctuations are predicted reasonably well by results for homogeneous flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.