Abstract
A Direct Numerical Simulation (DNS) study of statistically one-dimensional and planar, lean complex-chemistry hydrogen-air flames characterized by a low Lewis number Le and three different Karlovitz numbersKa ranging from 3 to 33 is performed, with the same complex-chemistry flames being also simulated by setting molecular diffusivities of all species equal to the heat diffusivity of the mixture. The simulations predict a significant increase in a ratio of turbulent burning velocity to the laminar flame speed in the former (Le<1) flames when compared to the latter (equidiffusive) flames. Extreme points characterized by the peak (over the computational domain) Fuel Consumption Rate (FCR) or Heat Release Rate (HRR) are found at each instant. In the equidiffusive flames, such extreme FCR and HRR are close to their peak values in the unperturbed laminar flame. If Le is low, the former rates are significantly higher than the latter ones due to an increase in the local temperature, equivalence ratio, and radical mass fractions, caused by diffusive-thermal effects. While the studied extreme points may appear sufficiently far from the leading edge of the instantaneous flame brush, leading points characterized by a lower, but still high (Le<1) FCR or HRR are observed close to the leading edge at each instant. Various local characteristics (temperature, equivalence ratio, species mass fractions and their gradients, reaction rates, etc.) of the extreme and leading points are explored and significant differences between zones characterized by high FCR or HRR are revealed. For instance, in the latter zones, major chemical pathways are changed. Moreover, while the extreme HRRs strongly fluctuate in time, with their mean and rms values being significantly increased by Ka, the extreme FCRs fluctuate weakly and are close at different Ka, thus, implying that almost the same extreme FCR can be reached in substantially different local burning structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.