Abstract

Current successes in artificial intelligence domain have revitalized interest in neural networks and demonstrated their potential in solving spacecraft trajectory optimization problems. This paper presents a data-free deep neural network (DNN) based trajectory optimization method for intercepting non-cooperative maneuvering spacecraft, in a continuous low-thrust scenario. Firstly, the problem is formulated as a standard constrained optimization problem through differential game theory and minimax principle. Secondly, a new DNN is designed to integrate interception dynamic model into the network and involve it in the process of gradient descent, which makes the network endowed with the knowledge of physical constraints and reduces the learning burden of the network. Thus, a DNN based method is proposed, which completely eliminates the demand of training datasets and improves the generalization capacity. Finally, numerical results demonstrate the feasibility and efficiency of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.