Abstract

Single nucleotide polymorphisms (SNPs) are widely existed in human genome and associated with many diseases. Traditional PCR-based methods for SNP genotyping require protein enzyme, precise control of temperature and removal of resultant products, making the whole process labor intensive and time consuming. Although G-quadruplex DNAzyme-based assays provide many advantages over traditional approaches, the relatively low catalytic activity of DNAzyme becomes an unfavorable factor in its application process. Therefore, amplification of DNAzyme for further determination is of great desire in bioanalysis. In this work, we have developed an enzyme-free and non-label DNAzyme sensor for SNP genotyping based on target-catalyzed hairpin assembly (CHA) for DNAzyme amplification. The proposed sensor, carried out on microfluidic chemiluminescence (CL) assay, can sensitively discriminate rs242557 hotspot-SNP, the A/G single-nucleotide variation on human chromosome associated with Alzheimer's disease, with an absolute detection limit of 0.3 fmol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.