Abstract
Coccidiosis is caused by several distinct intestinal protozoa of Eimeria sp., and is responsible for intestinal lesions and severe body weight loss in chickens. To develop a DNA vaccination strategy for coccidiosis, an expression vector pMP13 encoding a conserved antigen of Eimeria was constructed by subcloning 3-1E cDNA into pBK-CMV and used to elicit protective immunity against E. acervulina. One-day-old chickens were immunized intramuscularly (IM) or subcutaneously (SC) with various doses of pMP13 expression vector ranging from 5 to 100 ug two weeks apart and were challenged with 5×10 3 E. acervulina. Chickens immunized with 5, 10, 50 or 100 ug of pMP13 plasmid, but not control plasmid, pBK-CMV, showed significantly reduced oocysts following challenge infection with E. acervulina. Two injections were in general more effective than one injection with higher dose of DNA eliciting better protection. At 10 days post challenge infection, maximum levels of circulating antibodies were detected regardless of the routes of injection, although IM injection provided higher levels of serum antibodies compared to SC injection. Serum antibody levels demonstrated a dose-dependent response showing higher antibody production at higher DNA dose. DNA immunization with pMP13 also induced significant changes in T-cell subpopulations in the spleen and duodenum intraepithelial lymphocytes. At 4 days post DNA immunization, pMP13-immunized chickens showed lower CD8, and higher CD4 + and γδ T + cells in the duodenum compared to the pBK-CMV-immunized chickens. Following challenge infection with E. acervulina, pMP13-immunized chickens showed lower CD8 + and αβ T + cells, and higher CD4 + cells than pBK-CMV-immunized chickens in the duodenum. These findings demonstrate that DNA immunization with pMP13 induce local and systemic host immune responses against Eimeria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.