Abstract

Chemically engineered and functionalized nanoscale compartments are used in bottom-up synthetic biology to construct compartmentalized chemical processes. Progressively more complex designs demand spatial and temporal control over entrapped species. Here, we address this demand with a DNA-encoded design for the successive fusion of multiple liposome populations. Three individual stages of fusion are induced by orthogonally hybridizing sets of membrane-anchored oligonucleotides. Each fusion event leads to efficient content mixing and transfer of the recognition unit for the subsequent stage. In contrast to fusion-protein-dependent eukaryotic vesicle processing, this artificial fusion cascade exploits the versatile encoding potential of DNA hybridization and is generally applicable to small and giant unilamellar vesicles. This platform could thus enable numerous applications in artificial cellular systems and liposome-based synthetic pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.