Abstract
Dysregulation of DNA methylation is associated with human disease, particularly cancer, and the assessment of aberrant methylation patterns holds great promise for clinical diagnostics. However, DNA polymerases do not effectively discriminate between processing 5-methylcytosine (5 mC) and unmethylated cytosine, resulting in the silencing of methylation information during amplification or sequencing. As a result, current detection methods require multi-step DNA conversion treatments or careful analysis of sequencing data to decipher individual 5 mC bases. To overcome these challenges, we propose a novel DNA polymerase-mediated 5 mC detection approach. Here, we describe the engineering of a thermostable DNA polymerase variant derived from Thermus aquaticus with altered fidelity towards 5 mC. Using a screening-based evolutionary approach, we have identified a DNA polymerase that exhibits increased misincorporation towards 5 mC during DNA synthesis. This DNA polymerase generates mutation signatures at methylated CpG sites, allowing direct detection of 5 mC by reading an increased error rate after sequencing without prior treatment of the sample DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.