Abstract

Direct methanol fuel cell (DMFC) stacks consisting of 5 cells and 20 cells were assembled with low-cost hydrocarbon blend membranes and new electrocatalysts with better methanol tolerance and stability. The hydrocarbon blend membranes consisting of an acidic polymer (sulfonated poly (ether ether ketone), SPEEK) and a basic polymer (polysulfone-2-amide-benzimidazole, PSf-ABIm) exhibited low methanol crossover, high conductivity, and good mechanical stability. The Pt–Ru–Sn–Ce/C anode catalyst exhibited better stability than the commercial PtRu/C catalyst, while the cathode catalyst Pd–Co/C showed better methanol tolerance than the commercial Pt/C catalyst. A maximum power of around 20 W was achieved with a DMFC stack consisting of 20 membrane-electrode assemblies (MEAs) fabricated with the above membranes and electrocatalysts. The results demonstrate the feasibility of utilizing these acid-base blend membranes and novel catalysts for DMFC applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.