Abstract

AbstractIn this article we investigate the average order of the arithmetical functionwhere p1(t), p2(t) are polynomials in Z [t], of equal degree, positive and increasing for t ≥ 1. Using the modern method for the estimation of exponential sums ("Discrete Hardy-Littlewood Method"), we establish an asymptotic result which is as sharp as the best one known for the classical divisor problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.