Abstract

Abstract Sexual conflict is believed to be an important evolutionary force driving phenotypic diversification, especially sexual dimorphism. Males of diving beetles sometimes resort to coercive tactics to increase their chances of successful reproduction, which can impose costs on females. Sexual conflict can also drive sexual size dimorphism (SSD), particularly in species where males are larger than females. In this context, Rensch’s rule states that SSD tends to increase with body size in species with male-biased SSD and decrease with body size in species with female-biased SSD. The role of sexual conflict in driving the evolution of the allometric relationships between males and females remains unclear. We addressed whether sexual conflict in diving beetles might drive SSD. We found that dytiscids do not follow Rensch’s rule, whereby the SSD is isometric in relationship to species body size. Species with adhesive pads (Dytiscinae) showed a more pronounced SSD than other diving beetle species. These results suggest that the presence of adhesive pads might reduce the force necessary to control female movement during copulation and drive the evolution of smaller males. The findings of this study provide new insights into the role of sexual conflict in driving the evolution of SSD in animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call