Abstract

Singular value decomposition (SVD) is a fundamental linear operation that has been used for many applications, such as pattern recognition and statistical information processing. In order to accelerate this time-consuming operation, this paper presents a new divide-and-conquer approach for solving SVD on a heterogeneous CPU-GPU system. We carefully design our algorithm to match the mathematical requirements of SVD to the unique characteristics of a heterogeneous computing platform. This includes a high-performanc solution to the secular equation with good numerical stability, overlapping the CPU and the GPU tasks, and leveraging the GPU bandwidth in a heterogeneous system. The experimental results show that our algorithm has better performance than MKL's divide-and-conquer routine [18] with four cores (eight hardware threads) when the size of the input matrix is larger than 3000. Furthermore, it is up to 33 times faster than LAPACK's divide-and-conquer routine [17], 3 times faster than MKL's divide-and-conquer routine with four cores, and 7 times faster than CULA on the same device, when the size of the matrix grows up to 14,000. Our algorithm is also much faster than previous SVD approaches on GPUs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.