Abstract

An optimization algorithm based on the ‘divide-and-conquer’ methodology is proposed for solving large job shop scheduling problems with the objective of minimizing total weighted tardiness. The algorithm adopts a non-iterative framework. It first searches for a promising decomposition policy for the operation set by using a simulated annealing procedure in which the solutions are evaluated with reference to the upper bound and the lower bound of the final objective value. Subproblems are then constructed according to the output decomposition policy and each subproblem is related to a subset of operations from the original operation set. Subsequently, all these subproblems are sequentially solved by a particle swarm optimization algorithm, which leads directly to a feasible solution to the original large-scale scheduling problem. Numerical computational experiments are carried out for both randomly generated test problems and the real-world production data from a large speed-reducer factory in China. Results show that the proposed algorithm can achieve satisfactory solution quality within reasonable computational time for large-scale job shop scheduling problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.