Abstract

In this paper, we have considered a spatially flat FRW universe filled with pressureless matter and dark energy (DE). We have considered a phenomenological parametrization of the deceleration parameter [Formula: see text] and from this, we have reconstructed the equation-of-state (EoS) for DE [Formula: see text]. This divergence-free parametrization of the deceleration parameter is inspired from one of the most popular parametrization of the DE EoS given by Barboza and Alcaniz [see E. M. Barboza and J. S. Alcaniz, Phys. Lett. B 666 (2008) 415]. Using the combination of datasets (Type Ia Supernova (SN Ia) + Hubble + baryonic acoustic oscillations/cosmic microwave background (BAO/CMB)), we have constrained the transition redshift [Formula: see text] (at which the universe switches from a decelerating to an accelerating phase) and have found the best fit value of [Formula: see text]. We have also compared the reconstructed results of [Formula: see text] and [Formula: see text] and have found that the results are compatible with a [Formula: see text]CDM universe if we consider SN Ia + Hubble data, but inclusion of BAO/CMB data makes [Formula: see text] and [Formula: see text] incompatible with [Formula: see text]CDM model. The potential term for the present toy model is found to be functionally similar to a Higgs potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.