Abstract
SummaryWe present a hybridized discontinuous Galerkin (HDG) method for the incompressible Reynolds‐averaged Navier‐Stokes equations coupled with the Spalart‐Allmaras one‐equation turbulence model. The method extends upon an HDG method recently introduced by Rhebergen and Wells for the incompressible Navier‐Stokes equations. With a special choice of velocity and pressure spaces for both element and trace degrees of freedom (DOFs), the method returns pointwise divergence‐free mean velocity fields and properly balances momentum and energy. We further examine the use of different polynomial degrees and meshes to see how the order of the scalar eddy viscosity affects the convergence of the mean velocity and pressure fields, specifically for the method of manufactured solutions. As is standard with HDG methods, static condensation can be employed to remove the element DOFs and thus dramatically reduce the global number of DOFs. Numerical results illustrate the effectiveness of the proposed methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.