Abstract

The exploration of novel anti-lung cancer small-molecule drugs is important for drug resistance and adverse effects of chemotherapeutic drugs in current clinics. Disulfiram (DSF), as an antidote, has been proven to have excellent antitumor effects in combination with copper (Cu). However, the risk for potential neurotoxicity and hepatotoxicity in clinical use, as well as its poor water solubility, limits its use. In this study, we identified a DSF derivative, S-(N,N-diethyldithiocarbamoyl)-N-acetyl-L-cysteine, which could greatly increase the water solubility by converting it to a calcium salt (DS-NAC). The anti-lung cancer pharmacodynamic studies in vitro of DS-NAC were evaluated and a mouse model of lung cancer in situ was established to explore the therapeutic effects of DS-NAC compared with DSF and oxaliplatin (OXA). The results demonstrated that DS-NAC combined with Cu had superior cytotoxicity to DSF and OXA in the CCK8 assay against lung cancer cells, and exhibited potent anti-metastatic, epithelial-mesenchymal transition inhibition. In addition, DS-NAC showed better antitumor effects than DSF and comparable effects to OXA in lung cancer in situ model. In terms of the antitumor mechanism, we discovered that DS-NAC in combination with Cu exerted a greater inhibitory effect on the Notch pathway than DSF, which may account for its excellent antitumor effects. Finally, we verified the safety of DS-NAC in vivo, showing lower hepatotoxicity and neurotoxicity compared with DSF and OXA. DS-NAC is a promising anti-lung cancer drug with a favorable safety profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call