Abstract

ObjectiveCell diameter, area, and volume are established quantitative measures of adipocyte size. However, these different adipocyte sizing parameters have not yet been directly compared regarding their distributions. Therefore, the study aimed to investigate how these adipocyte size measures differ in their distribution and assessed their correlation with anthropometry and laboratory chemistry. In addition, we were interested to investigate the relationship between fat cell size and adipocyte mitochondrial respiratory chain capacity.MethodsSubcutaneous and visceral histology-based adipocyte size estimates from 188 individuals were analyzed by applying a panel of parameters to describe the underlying cell population. Histology-based adipocyte diameter distributions were compared with adipocyte diameter distributions from collagenase digestion. Associations of mean adipocyte size with body mass index (BMI), glucose, HbA1C, blood lipids as well as mature adipocyte mitochondrial respiration were investigated.ResultsAll adipocyte area estimates derived from adipose tissue histology were not normally distributed, but rather characterized by positive skewness. The shape of the size distribution depends on the adipocyte sizing parameter and on the method used to determine adipocyte size. Despite different distribution shapes histology-derived adipocyte area, diameter, volume, and surface area consistently showed positive correlations with BMI. Furthermore, associations between adipocyte sizing parameters and glucose, HbA1C, or HDL specifically in the visceral adipose depot were revealed. Increasing subcutaneous adipocyte diameter was negatively correlated with adipocyte mitochondrial respiration.ConclusionsDespite different underlying size distributions, the correlation with obesity-related traits was consistent across adipocyte sizing parameters. Decreased mitochondrial respiratory capacity with increasing subcutaneous adipocyte diameter could display a novel link between adipocyte hypertrophy and adipose tissue function.

Highlights

  • Adipose tissue is a unique organ with great plasticity displaying unmatched expansion and shrinkage capacities during periods of caloric excess or deprivation which is directly reflected in up to multiple fold changes in fat cell volume [1–3]

  • P values < 0.05 from the Shapiro Wilk tests and large deviations in the correlation between a normal distribution and sample distribution displayed by quantile–quantile plots further supported the hypothesis of histology-derived adipocyte areas being non-normally distributed

  • Calculation of adipocyte volume from adipocyte area represents exponentiation of the data by the power of 3 and resulted in a sharper distribution shape with greater asymmetry compared to the adipocyte area distributions (Fig. 1E, F)

Read more

Summary

Introduction

Adipose tissue is a unique organ with great plasticity displaying unmatched expansion and shrinkage capacities during periods of caloric excess or deprivation which is directly reflected in up to multiple fold changes in fat cell volume [1–3]. The onset of obesity in adults is characterized by an increase in adipose tissue mass mostly due to the enlargement of existing fat cells (hypertrophy) [4, 5]. Hyperplasia, which describes an increase in fat cell number is considered to only play a minor role in the expansion of adipose tissue mass in adults [5]. Distributions from one sizing method may not always be comparable since different variables such as area or feret diameter can be used as output measurements [7, 8]. The transformation of the initial size measurement into another sizing variable assuming a spherical shape might reduce comparability due to the nonlinear transformation of the data (diameter = sqrt((4*area)/π); volume = 1/6*diameter3*π) [8–10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call