Abstract

In this work, we propose a distributionally robust stochastic model predictive control (DR-SMPC) algorithm to address the problem of multiple two-sided chance constrained discrete-time linear systems corrupted by additive noise. The prevalent mechanism to cope with two-sided chance constraints is the so-called risk allocation approach, which conservatively approximates the two-sided chance constraints with two single chance constraints by applying Bool's inequality. In this proposed DR-SMPC framework, an exact second-order cone approach is adopted to abstract the multiple two-sided chance constraints by considering the first and second moments of the noise. With the proposed DR-SMPC algorithm, the worst-case probability of violating safety constraints is guaranteed to be within a pre-specified maximum value. By flexibly adjusting this pre-specified maximum probability, the feasible region of the initial state can be increased for the SMPC problem. The recursive feasibility and convergence of the proposed DR-SMPC are rigorously established by introducing a binary initialization strategy for the nominal state. A simulation study of a single spring and double mass system was conducted to demonstrate the effectiveness of the proposed DR-SMPC algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.