Abstract

AbstractThis paper describes the development and testing of a distributed surface energy-balance model used to calculate rates of surface melting at Haut Glacier d’Arolla, Valais, Switzerland. The model uses a digital elevation model (DEM) of the glacier surface and surrounding topography together with meterological data collected at a site in front of the glacier to determine hourly or daily totals of the energy-balance components and hence of melting over the entire surface of the glacier with a spatial resolution of 20 m. The model can also be used to determine temporal and spatial variations in snow depth, snow-line position and glacier surface albedo. Calculations from the model are compared with observations made along the glacier centre line 1990, and in general the model performs very well. The correlation coefficients between calculated and measured snow-line elevation, albedo and ablation are 0.99, 0.85 and 0.81, respectively. The main source of error between modelled and measured values of these variables is probably inadequacies in the parameterization of albedo used in the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.