Abstract
In this paper, we study the problem of collective decision-making over combinatorial domains, where the set of possible alternatives is a Cartesian product of (finite) domain values for each of a given set of variables, and these variables are not preferentially independent. Due to the large alternative space, most common rules for social choice cannot be directly applied to compute a winner. In this paper, we introduce a distributed protocol for collective decision-making in combinatorial domains, which enjoys the following desirable properties: (i) the final decision chosen is guaranteed to be a Smith member; (ii) it enables distributed decision-making and works under incomplete information settings, i.e., the agents are not required to reveal their preferences explicitly; (iii) it significantly reduces the amount of dominance testings (individual outcome comparisons) that each agent needs to conduct, as well as the number of pairwise comparisons; (iv) it is sufficiently general and does not restrict the choice of preference representation languages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.