Abstract
Workflow management systems have been widely used in many business process management (BPM) applications. There are also a lot of companies offering commercial software solutions for BPM. However, most of them adopt a simple client/server architecture with one single centralized workflow-management server only. As the number of incoming workflow requests increases, the single workflow-management server might become the performance bottleneck, leading to unacceptable response time. Development of parallel servers might be a possible solution. However, a parallel server architecture with a fixed-number of servers cannot efficiently utilize computing resources under time-varying system workloads. This paper presents a distributed workflow-management server architecture which adopts dynamic resource provisioning mechanisms to deal with the probable performance bottleneck. We implemented a prototype system of the proposed architecture based on a commercial workflow management system, Agentflow. A series of experiments were conducted on the prototype system for performance evaluation. The experimental results indicate that the proposed architecture can deliver scalable performance and effectively maintain stable request response time under a wide range of incoming workflow request workloads.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.