Abstract

The abiding attempt of automation has also pervaded computer networks, with the ability to measure, analyze, and control themselves in an automated manner, by reacting to changes in the environment (e.g., demand) while exploiting existing flexibilities. When provided with these features, networks are often referred to as self-driving. Network virtualization and machine learning are the drivers. In this regard, the provision and orchestration of physical or virtual resources are crucial for both Quality of Service guarantees and cost management in the edge/cloud computing ecosystem. Auto-scaling mechanisms are hence essential to effectively manage the lifecycle of network resources. In this poster, we propose Relevant, a distributed reinforcement learning approach to enable distributed automation for network orchestrators. Our solution aims at solving the congestion control problem within Software-Defined Network infrastructures, while being mindful of the energy consumption, helping resources to scale up and down as traffic demands fluctuate and energy optimization opportunities arise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.