Abstract
ABSTRACTProportional fairness (PF) scheduling achieves a balanced tradeoff between throughput and fairness and has attracted great attention recently. However, most previous work on PF only considers the single cell scenario. This paper focuses on the problem of achieving network‐wide PF in a generalized multiple base station multiple user network. The problem is formulated as a maximization model and solved using the dual method. By decomposing the dual objective function, we get a distributed pricing based algorithm. Optimality of this algorithm is presented. Although the algorithm is derived using fixed link rate assumption, it can still apply in the presence of time‐varying rates. The proposed algorithm is suitable for distributed systems in the sense that it does not need any inter base station communication at all. Simulations illustrate that the proposed distributed network‐wide PF scheduling algorithm achieves almost the same performance as the centralized one. Compared with traditional local PF (LPF) scheduling, the network‐wide PF scheduling achieves higher throughput, lower throughput oscillation, and greater fairness. Copyright © 2010 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.