Abstract
Nowadays, it has become well known that efficient training of deep neural networks plays a vital role in various successful applications. To achieve this goal, it is impractical to use only one computer, especially when the scale of models is large and some efficient computing resources are available. In this paper, we present a distributed parallel computing framework for training deep belief networks (DBNs) by employing the great power of high-performance clusters (i.e., a system consists of many computers). Motivated by the greedy layer-wise learning algorithm of DBNs, the whole training process is divided layer by layer and distributed to different machines. At the same time, rough representations are exploited to parallelize the training process. By conducting experiments on several large-scale real datasets, the novel algorithms are shown to significantly accelerate the training speed of DBNs while achieving better or competitive prediction accuracy in comparison with the original algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.