Abstract
AbstractThe coexistence of various base stations (BSs) in heterogeneous networks (HetNets) has emerged as a promising approach to meet the ever increasing network capacity. In these networks, one of the important issues is the problem of associating user equipments (UEs) to BSs. In this paper, we investigate the UE association (UEA) problem in heterogeneous networks and propose a load‐aware UEA mechanism based on the BSs' estimated load and signal‐to‐interference‐and‐noise ratio. The proposed mechanism can capture the trade‐off between UE's quality‐of‐service requirement and delay. We model this strategic UE‐BS association as a noncooperative game. To solve the game, we develop a fully distributed algorithm inspired by machine learning techniques, whereby the proposed UEA scheme corresponds to a Markov chain. In the proposed scheme, each UE senses its environment and decides which BS to select based on the satisfaction technique. Therefore, it achieves a high level of satisfaction for UEs. Furthermore, use of historical information helps UEs select BSs with better long‐term performance. Simulation results show that the proposed mechanism reduces fractional transfer time and the number of unsatisfied UEs, respectively, up to about 46% and 52.3% and improves BS throughput up to about 15.4% compared to a benchmark algorithm that is based on the received signal strength and the BS's estimated load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions on Emerging Telecommunications Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.