Abstract

A cell-based distributed watershed model is developed which enables us to simulate the hydrological and hydraulic aspects of the watershed in a refined fashion. With three-zoned cell profiling, the model is composed of three sub-models; tank model for a surface water zone, soil moisture model for a surface soil zone, and unconfined shallow groundwater flow model for a subsurface zone. Inclusion of the soil moisture sub-model modified to reroute the infiltration, routed from the tank sub-model, into the return flow and the groundwater recharge features the model. The groundwater flow sub-model, numerically approximated by use of the finite volume method and the implicit time-marching scheme, considers a network of on-farm drainage canals as internal boundaries, which is an essential need for modeling the watershed including farmlands. Cascade-linking of the three sub-models in a cell and assembling of all the cells over the entire watershed domain provides the global equations system to be solved. Applicability of the model is demonstrated with its practical application to a real watershed in that paddy and upland crop fields take great part of the land-use practice. It is then indicated in a quantified manner that rice farming significantly contribute as a major groundwater recharger in an irrigation period to fostering and conservation of regional water resources. Along with appropriately profiling a cell, the model is so versatile and tough that it can be applied without difficulty to a watershed of diverse terrains and land-uses and the computations can stably be carried out. It is thus concluded that the model presently developed could be a powerful “watershed simulator” to investigate and assess the time-varying hydro-environmental properties of a watershed while separating and integrating the hydrological and hydraulic components of particular importance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.