Abstract

The ALICE detector is a dedicated heavy-ion detector currently built at the large hadron collider (LHC) at CERN. The detector consists of several sub-detectors each of them forming a highly complex device. The detector control system (DCS) covers the task of controlling, configuring and monitoring of the detector system. Since the experiment was running in a radiation environment, fault tolerance, error correction and system stability in general are major concerns. A system consisting of independently running layers has been designed, the functionality layers are running on a large number of nodes and sub-nodes. An autonomous single-board computer, the DCS board, has been developed which allows one to run the operating system Linux in an embedded environment and to perform tasks related to the hardware devices. Further custom hardware devices have been developed covering specific tasks and serving as sub-nodes. These devices together with standard computers in higher control layers form a distributed control system. This article focused on the concept and architecture of the DCS for the front-end electronics of the time-projection chamber (TPC) and present results and experiences from system integration tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.