Abstract

This study presents a distributed gradient-based approach to solve system optimal dynamic traffic assignment (SODTA) formulated based on the cell transmission model. The algorithm distributes SODTA into local sub-problems, who find optimal values for their decision variables within an intersection. Each sub-problem communicates with its immediate neighbors to reach a consensus on the values of common decision variables. A sub-problem receives proposed values for common decision variables from all adjacent sub-problems and incorporates them into its own offered values by weighted averaging and enforcing a gradient step to minimize its objective function. Then, the updated values are projected onto the feasible region of the sub-problems. The algorithm finds high quality solutions in all tested scenarios with a finite number of iterations. The algorithm is tested on a case study network under different demand levels and finds solutions with at most a 5% optimality gap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.