Abstract

Protein-protein interactions are of great significance for human to understand the functional mechanisms of proteins. With the rapid development of high-throughput genomic technologies, massive protein-protein interaction (PPI) data have been generated, making it very difficult to analyze them efficiently. To address this problem, this paper presents a distributed framework by reimplementing one of state-of-the-art algorithms, i.e., CoFex, using MapReduce. To do so, an in-depth analysis of its limitations is conducted from the perspectives of efficiency and memory consumption when applying it for large-scale PPI data analysis and prediction. Respective solutions are then devised to overcome these limitations. In particular, we adopt a novel tree-based data structure to reduce the heavy memory consumption caused by the huge sequence information of proteins. After that, its procedure is modified by following the MapReduce framework to take the prediction task distributively. A series of extensive experiments have been conducted to evaluate the performance of our framework in terms of both efficiency and accuracy. Experimental results well demonstrate that the proposed framework can considerably improve its computational efficiency by more than two orders of magnitude while retaining the same high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.