Abstract

Sequencing problems arise in the context of process scheduling both in isolation and as subproblems for general scenarios. Such sequencing problems can often be posed as an extension of the Traveling Salesman Problem. We present an exact parallel branch and bound algorithm for solving the Multiple Resource Constrained Traveling Salesman Problem (MRCTSP), which provides a platform for addressing a variety of process sequencing problems. The algorithm is based on a linear programming relaxation that incorporates two families of inequalities via cutting plane techniques. Computational results show that the lower bounds provided by this method are strong for the types of problem generators that we considered as well as for some industrially derived sequencing instances. The branch and bound algorithm is parallelized using the processor workshop model on a network of workstations connected via Ethernet. Results are presented for instances with up to 75 cities, 3 resource constraints, and 8 workstations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call