Abstract

We consider the stochastic generalized Nash equilibrium problem (SGNEP) where a set of self-interested players, subject to certain global constraints, aim to optimize their local objectives that depend on their own decisions and the decisions of others and are influenced by some random factors. A distributed stochastic generalized Nash equilibrium seeking algorithm is proposed based on the Douglas-Rachford operator splitting scheme, which only requires local communications among neighbors. The proposed scheme significantly relaxes assumptions on co-coercivity and contractiveness in the existing literature, where the projected stochastic subgradient method is applied to provide approximate solutions to the augmented best-response subproblems for each player. Finally, we illustrate the validity of the proposed algorithm through a Nash-Cournot production game.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.