Abstract

In this paper, we consider the formation control problem for uncertain homogeneous Lagrangian nonlinear multi-agent systems in a leader-follower scheme under a directed communication protocol. A distributed adaptive control protocol of minimal complexity is proposed that achieves prescribed, arbitrarily fast and accurate formation establishment as well as synchronization of the parameter estimates of all followers. The estimation and control laws are distributed in the sense that the control signal and the update laws are calculated based solely on local relative state information. Moreover, provided that the communication graph is strongly connected and contrary to the related works on multi-agent systems, the controller-imposed transient and steady state performance bounds are fully decoupled from: (i) the underlying graph topology, (ii) the control gains selection and (iii) the agents’ model uncertainties. Finally, extensive simulation studies on the attitude control of flying spacecrafts clarify and verify the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.