Abstract
In a service-oriented Internet of things (IoT) deployment, it is difficult to make consensus decisions for services at different IoT edge nodes where available information might be insufficient or overloaded. Existing statistical methods attempt to resolve the inconsistency, which requires adequate information to make decisions. Distributed consensus decision making (CDM) methods can provide an efficient and reliable means of synthesizing information by using a wider range of information than existing statistical methods. In this paper, we first discuss service composition for the IoT by minimizing the multi-parameter dependent matching value. Subsequently, a cluster-based distributed algorithm is proposed, whereby consensuses are first calculated locally and subsequently combined in an iterative fashion to reach global consensus. The distributed consensus method improves the robustness and trustiness of the decision process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.