Abstract

Developers must spend more effort and attention on the processes of software development to deliver quality applications to the users. Software testing and automation play a strategic role in ensuring the quality of mobile applications. This paper proposes and evaluates a Distributed Bug Analyzer based on user-interaction features that uses digital imaging processing to find bugs. Our Distributed Bug Analyzer detects bugs by comparing the similarity between images taken before and after an user-interaction feature occurs. An interest point detector and descriptor is used for image comparison. To evaluate the Distribute Bug Analyzer, we conducted a case study with 38 randomly selected mobile applications. First, we identified user-interaction bugs by manually testing the applications. Images were captured before and after applying each user-interaction feature. Then, image pairs were processed (using SURF) to obtain interest points, from which a similarity percentage was computed, to identify the presence of bugs. We used a Master Computer, a Storage Test Database, and four Slave Computers to evaluate the Distributed Bug Analyzer. We performed 360 tests of user-interaction features in total. We found 79 bugs when manually testing user-interaction features, and 69 bugs when using digital imaging processing to detect bugs with a threshold fixed at 92.5% of similarity. Distributed Bug Analyzer evenly distributed tests that are pending in the Storage Test Database between the Slave Computers. Slave Computers 1, 2, 3, and 4 processed 21, 20, 23, and 36% of image pair respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.