Abstract
In this letter, we review an existing distributed least-squares solver and share some new insights on it. Then, by the observation that an estimation of a constant vector under output noise can be translated into finding the least-squares solution, we present an algorithm for distributed estimation of the state of linear time-invariant systems under measurement noise. The proposed algorithm consists of a network of local observers, where each of them utilizes local measurements and information transmitted from the neighbors. It is proven that even under non-vanishing and time-varying measurement noise, we could obtain an almost best possible estimate with arbitrary precision. Some discussions regarding the plug-and-play operation are also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.