Abstract

ABSTRACT A transition of dendrite growth kinetics from stable hcp to metastable fcc phases was observed for refractory Re95W5 alloy in an electrostatic levitation state, which attained a liquid undercooling up to 872 K (0.26T L). Stable hcp dendrite dominated in the single recalescence for pure Re in the whole of its undercooling regime, but prevailed for Re95W5 alloy only in the specific range of 159–867 K undercooling. The rapid dendrite growth velocity displayed a power-law relationship with the degree of undercooling. Once the refractory alloy melt was undercooled beyond 867 K undercooling, metastable fcc dendrite grew primarily from the liquid phase in the first recalescence, which was followed by a complete ‘fcc to hcp’ solid-state transformation in the second recalescence. An abrupt change of growth kinetics took place to depress the dendrite growth velocity drastically from 41.8 m·s−1 for stable hcp phase at 867 K undercooling to 10.9 m·s−1 for metastable fcc phase at 872 K undercooling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call