Abstract

For over 200 years, scientists have recognized the nearly ubiquitous poleward decline of species richness, but none of the theories explaining its occurrence has been widely accepted. In this continental study of U.S. running waters, I report an exception to this general pattern, i.e., a U-shaped latitudinal distribution of diatom richness (DR), equally high in subtropical and temperate regions. This gradient is linked unequivocally to corresponding trends in basin and stream properties with impact on resource supply. Specifically, DR distribution was related to wetland area, soil composition, and forest cover in the watershed, which affected iron, manganese, and macronutrient fluxes into streams. These results imply that the large-scale biodiversity patterns of freshwater protists, which are seasonal, highly dispersive, and sheltered by their environment from extreme temperature fluctuations, are resource driven in contrast to more advanced, perennial, and terrestrial organisms with biogeography strongly influenced by climate. The finding that wetlands, through iron export, control DR in streams has important environmental implications. It suggests that wetlands loss, already exceeding 52 million hectares in the conterminous United States alone, poses a threat not only to local biota, but also to biodiversity of major stream producers with potentially harmful consequences for the entire ecosystem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call