Abstract

Gas hydrate bearing sediments are an integral part of the world’s continental margins. Several tsunamigenetic continental slope failure events have been triggered by gas hydrates, but their mechanical behavior is poorly understood. In this work, we propose a method to simulate a surface tensed medium such as gas hydrate in soil, using distinct element method (DEM). For implementation in sediment pore size, we scaled up attractive particle interactions governing surface tension on molecular level. Several virtual experiments are used to benchmark the proposed method. A simulation of gas hydrate growth in sediment with differing grain sizes demonstrates the potential of the new approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call