Abstract

How does the brain represent and manipulate abstract mathematical concepts? Recent evidence suggests that mathematical processing relies on specific brain areas and dissociates from language. Here, we investigate this dissociation in two fMRI experiments in which professional mathematicians had to judge the truth value of mathematical and nonmathematical spoken statements. Sentences with mathematical content systematically activated bilateral intraparietal sulci and inferior temporal regions, regardless of math domain, problem difficulty, and strategy for judging truth value (memory retrieval, calculation or mental imagery). Second, classical language areas were only involved in the parsing of both nonmathematical and mathematical statements, and their activation correlated with syntactic complexity, not mathematical content. Third, the mere presence, within a sentence, of elementary logical operators such as quantifiers or negation did not suffice to activate math-responsive areas. Instead, quantifiers and negation impacted on activity in right angular gyrus and left inferior frontal gyrus, respectively. Overall, these results support the existence of a distinct, non-linguistic cortical network for mathematical knowledge in the human brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call