Abstract

DISGEO is a new implementation of a distance geometry algorithm which has been specialized for the calculation of macromolecular conformation from distance measurements obtained by two-dimensional nuclear Overhauser enhancement spectroscopy. The improvements include (1) a decomposition of the complete embedding process into two successive, more tractable calculations by the use of “substructures”, (2) a compact data structure for storing incomplete distance information on a structure, (3) a more efficient shortest-path algorithm for computing the triangle inequality limits on all distances from this information, (4) a new algorithm for selecting random metric spaces from within these limits, (5) the use of chirality constraints to obtain good covalent geometry without the use of ad hoc weights or excessive optimization. The utility of the resultant program with nuclear magnetic resonance data is demonstrated by embedding complete spatial structures for the protein basic pancreatic trypsin inhibitor vs all 508 intramolecular, interresidue proton-proton contacts shorter than 4.0 A that were present in its crystal structure. The crystal structure could be reproduced from this data set to within 1.3 A minimum root mean square coordinate difference between the backbone atoms. We conclude that the information potentially available from nuclear magnetic resonance experiments in solution is sufficient to define the spatial structure of small proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.