Abstract
Abstract The theoretical study of Genetic Algorithms and the dynamics induced by their genetic operators is a research field with a long history and many different approaches. In this paper we complete a recently presented approach to model one-point crossover using pretopologies (or Cechtopologies) in two ways. First, we extend it to the case of n-points crossover. We extend the definition of crossover distance between populations to work for n-points crossover, proving that computing it can be performed in polynomial time for any fixed number of crossover points. Secondly, we experimentally study how the distance distribution changes when the number of crossover points increases. In particular, the average distance between a population and the optimum decreases with the increase in the number of crossover points, showing that increasing the latter can reduce the number of crossover operations needed to evolve an optimal solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.