Abstract
Alzheimer's disease (AD) is a degenerative brain disorder characterised by various neurological symptoms, including memory impairment and mood disorders, associated with the abnormal accumulation of amyloid b(Aβ) and tau proteins in the brain. There is still no definitive treatment available for AD, and the Aβ antibody drugs, which are expected to be approved by the FDA, have many limitations. Therefore, there is an urgent need to develop low-molecular-weight therapeutic agents for the management of AD. In this study, we investigated whether pectolinarin, a flavonoid, regulates Aβ aggregation and Aβ-induced toxicity. Pectolinarin demonstrated concentration-dependent inhibition of Aβ aggregation and had the ability to break down pre-formed Aβ aggregates, thereby reducing their neurotoxicity. Furthermore, pectolinarin suppressed Aβ aggregates-induced reduction in long-term potentiation (LTP) in the hippocampus. Oral administration of pectolinarin in experimental animals inhibited memory impairment and LTP deficits induced by Aβ injection in the hippocampus. These results indicate that pectolinarin may reduce toxic Aβ species and Aβ-induced memory impairments and synaptic dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.