Abstract

Transient states maintained by energy dissipation are an essential feature of dynamic systems where structures and functions are regulated by fluxes of energy and matter through chemical reaction networks. Perfected in biology, chemically fueled dissipative networks incorporating nanoscale components allow the unique properties of nanomaterials to be bestowed with spatiotemporal adaptability and chemical responsiveness. We report the transient dispersion of gold nanoparticles in water, powered by dissipation of a chemical fuel. A dispersed state that is generated under non-equilibrium conditions permits fully reversible solid-liquid or liquid-liquid phase transfer. The molecular basis of the out-of-equilibrium process is reversible covalent modification of nanoparticle-bound ligands by a simple inorganic activator. Activator consumption by a coupled dissipative reaction network leads to autonomous cycling between phases. The out-of-equilibrium lifetime is tunable by adjusting the pH value, and reversible phase cycling is reproducible over several cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.